Diamond Color Optimization

Process flow

Today available:

Colored diamonds on the market usually have many negative phenomena: dark zones and pale zones. Sometimes diamond cutters have no idea now to optimize color by smart cutting.

© 2007 OctoNus Ltd & Diamond

Optical phenomena modeling

It was not possible to remove these diamonds from their settings. However an approximate 3D modeling clearly shows that a saturated princess cut and a worse radiant cut can be polished from a diamond with the same spectrum.

© 2007 OctoNus Ltd & Diamond

Process flow

- 1. Preparation of a rough diamond
- 2. Rough scanning and allocation
- 3. Shape and size preliminary considerations
- 4. Taking pictures and obtaining their RGB data
- 5. Recording transmission spectra
- 6. Calculations of absorption spectra
- 7. Importing spectrum into DiamCalc. Spectrum adjustment
- 8. Preliminary shapes color check
- 9. Optimization by color metrics
- 10. Expert consideration of optimization results
- 11. Final allocation and final decision
- 12. Documenting of the final stone

Preparation of a rough diamond

Visual observation
 Color distribution study
 Polishing windows
 Control of windows

Rough scanning and allocation

- Helium diamond model construction
- Check of model accuracy
- Inclusions allocation
- Polished diamonds allocation
- Choosing one or two prospective shapes

Library of shapes

<u>Designer Cuts gallery</u> <u>DiamCalc Internal Cuts gallery</u> <u>External Cuts gallery (DII)</u> http://www.octonus.com/oct/gallery/external.php

© 2007 OctoNus Ltd & Diamond

Cushions examples

Polished diamonds allocation

Two different cushions

Taking pictures and obtaining their RGB data

- Use of a light table
- Stone and camera positions
- Background color correction
- Camera settings
- Picture quality check
- Obtaining stone/background RGB pairs in Adobe PhotoShop

Use of light table

Stone and camera positions

Stone/background RGB pairs

Recording transmission spectra

- Spectrometer settings
- Reference spectrum recording
- Sample directions 1 and 2 transmission spectra recording
- Calculation of sample transmission 1 and 2 spectra
- Visual check of spectral curves

Visible range spectrometers

Lambda 35 or SF-56A

Sample position on the holder

Sample directions 1 and 2 transmission spectra recording

Calculations of absorption spectra

- Import transmission file to the Microsoft Excel template
- Input sample thickness
- Visual check and comparison of absorption spectra
- Saving .txt absorption files
- Importing spectrum into DiamCalc

Calculation of sample absorption 1 and 2 spectra

🛛 Microsoft Excel - SpectrumCalculationExample																			
🖲 Ele Edit View Insert Format Iools Data Window Help Adobe PDF																			
A	ВС	DE	É F	G H	IJ	J K	L	M	0	Ρ	Q	R	S	TU	V	/ W	Х	Y	Z
Dact	to pofore	neo er	octrum																
2 4 4	e perere	nuc sp	<i>c</i> etrum	=						-	1								
3		Input dat	a		~ P	et samp	le thi	ICI	kness	Calcula	atior	n				Output data	a to DMC		
4		<u> </u>		<u> </u>	i-l-									100					
5	Sample thick	kness in mm	1 5.49		+									15 10 15 10					
7	Reference s	nectrum	Sample spectr	um	et-	Reflection coe	fficient	-	Transmission	%	++	Absorption co	efficient	pi a		Absorption co	efficient		
8	wavelenght of	intersity	wavelenght, nm	intersity	et-	wavelenght, nm	F	R	wavelenght. nm	, /• T. °	6	wavelenght. nm	A. mm ⁻¹	i i	-	wavelenght. nm	A. mm ⁻¹		
9	-	309.5	300	0 1	i E	300	0.185525	à	300	0.1	2	300	0.344654181			370	0.115		
10	301	307.9	301	0	P2	aste sair	101649	De	actrum	0.1	2	301	0.344695755			371	0.118		
11	302	313.3	302	1	1	302	0.185344	4	302	0.1	2	302	0.344737136			372	0.120		
12	303	315	303 🥖	🥭 o 🗍	4	303	0.185252	2	303	0.	2	303	0.344778326			373	0.123		
13	304	315	304	0	4	304	0.18516	ŝ	304	0.2	2	304	0.344819325	<u> </u>	_	374	0.126		
14		315	305	ļ		305	0.185069	3	305	U	2	305	0.344860134	<u>i-</u>		3/5	0.129		
15		Reference	spectrum	- I F	r+-	-	Sample	e tra	ansmission, %			300	0.344900755			370	0.130		
10					+	-	· · · ·	w				308	0.344941103			378	0.130		
18	30000 T		+		í E	- ao					_	309	0.345021477			379	0.132		
19	70000 -		~	- I J		70		-			-	310	0.345061343	a 6	÷	380	0.134		
20	6 000 -		K ()	. J		60	<u> </u>				-	311	0.345101021			381	0.137		
21	5 000 0		1 > 1 > 1	. / !		»	#				-	312	0.345140513			382	0.139		
22	4 000 -	\checkmark		\sim \square	1		<u> </u>				-	313	0.345179819			383	0.141		
23	30000	1		- I I	i H-	_ » ×						314	0.345218939			384	0.141		
24	2000 -	1		- I I	r+-	_ » 					-	315	0.345257875	ps5		20L 20C	U.140		
25				- I I	r († 1	10					-	310	0.345296626	<u>86</u>		300	0.137		
20	•		+	!					200			318	0.345353575	12 10	-	388	0.134		
28	<i>su</i>	500	······································	° ₹†			·		600	500	544	319	0.345411778	pic le		389	0,131		
29	320	308.9	320			320	0.183749	3	320	0.1	2	320	0.345449796	ii ii		390	0.131		
30	1					1		-				321	0.345487633	Č.		391	0.133		
31		Samplers	pectrum			1	Sample	e abs	sorption, mm			322	0.345525289			392	0.134		
32												323	0.345562764			393	0.135		
33					i H	0.4						324	0.345600059	ps C	-	394	0.135		
34	50 <mark>100</mark> -		~	- I I	i H	0.35						325	0.34563/1/4	0		395	0.130		
35	+0 <mark>00</mark> -	- I	KIN	F	+	0.25						320	0.345674111			390	0.121		
30		X	1×1	11		02						328	0.345710000	10	-	398	0.112		
38	" "]	~			rt-	0.15	8					329	0.34578385	-		399	0.105		
39	20100 -			- I J		0.1	٩.					330	0.345820075	ĉ l		400	0.105		
40	1000			- I J		0.05	N.					331	0.345856124			401	0.107		
41		<u> </u>		J		•					_	332	0.345891997	S 12		402	0.111		
42	300 400	500	60 700 80 ⁷	00 O.		-0.05 **	30 900		600 700	800	990	333	0.345927694			403	0.111		
43		201.2			- H-	225	0.400540	-	225		-	334	0.345963217		-	404	0.105		
44	330	301.3	335			333	U.182510	3	330	U.,	2	255	0.345996565			405	0.094		
45	337	300.7	330		+	-	Refraction	сое	efficient dispecs	ion		337	0.346068741	10-10-		400	0.002		
40	338	296.9	338		et:	-	and the strength of the	0.000				338	0.346103569	<u></u>	-	408	0.071		
48	330	296.4	330	44.46	۵Ľ	0.19						339	0.272283014			409	0.059		
14 A P		nsmission 🔏 A	Absorption									 ∢							
Draw •	AutoShapes •		○ 🛯 🖪 🔅 🦉	🧟 🔜 🔌 -	, 🧾 ·	• A • = =	≓∎ (1.											
Ready																			

Visual check and comparison of absorption spectra

N3101 38 14.31ct Diamond Spectra 0.9 0.8 0.7 9.77mm 10.23mm 0.6 0.5 0.4 0.3 0.2 0.1 0 420 470 520 570 620 670 720 370 770

Importing spectrum into DiamCalc

Gem properties 🛛 🔀								
General Refraction details								
Optical properties								
Absorption (colorless) Add Absorption								
Import Absorption Spectrum Import Transmission Spectrum								
Export Absorption Spectrum								
Other Specific gravity (g/cm3)								
ОК Отмена Применить Справка								

DiamCalc plate model verification. Spectrum adjustment

- DC transmission illumination mode
- Lighting conditions and eye color adaptation
- Prism thickness
- Color information panel
- Plate and background RGB coordinates
- Light brightness adjustment with photo RGB
- Spectrum adjustment
- Prism and photo color verification
- Selecting between spectra 1 and 2

DC transmission illumination mode

Color information panel

Spectrum adjustment

2	Untitlet - DiamCalc							
File	View Options Cut Gemmaterial Help							
₽1	Shape and cut Parameters quality P Appraiser							
	Prism AGS_2005							
Ø	Proportions Advanced Advanced 2 Cut Quality							
₩	Gem properties 6.00 mm • Step							
	General Refraction details Absorption							
	Baseline 0.005 Multiply coefficient 1.00000 Multiply							
	Spectrum: wave absorption 370 0.500							
	371 0.500 372 0.500 373 0.500 374 0.500 375 0.500							
	ОК Отмена Применить Справка -2.35ct (-718%)							
Q	🕻 Angle,° 📱 💽 🌜 🕗 🕂 🕂							
For Help, press F1 DMC(500 x 500); AVI(496 x 496)								

Prism and photo color verification

Prism RGB verification

Background RGB verification

Preliminary shapes color check

- Standard and external parametrical cuts
- ASCII cuts import
- Standard lighting conditions
- DiamCalc color statistics panel
- Manual proportions adjustment
- Selecting cuts for computer optimization

Standard, external parametrical cuts and ASCII cuts

Standard lighting conditions

Dialite black BG

Jewelry Shop

Gretag Macbeth Judge II

DiamCalc color statistics panel

Choosing proportions to be optimized

- For parametrical cuts
- For ASCII cuts
- Selection of optimization ranges and steps

Choosing proportions to be optimized and to be fixed for parametrical cuts

- For internal DiamCalc cuts main proportions for optimization are:
- pavilion angle
- crown angle
- table diameter
- Iower facets depth

For external DiamCalc cuts:

- pavilion front angle and pavilion flank angle (or Moon facet angle and Moon rotate angle for Oval cut)
- pavilion angle
- crown angle
- table diameter
- Iower facets depth

Choosing proportions to be optimized and to be fixed for ASCII cuts

ASCII cuts are not parametrical and DiamCalc allows changing:
pavilion height
crown height
girdle thickness

Optimization by color metrics

- DiamCalc optimization panel settings
- DiamCalc color metrics
- Optimization time
- Optimization results table
- Graphical representation of optimization results

DiamCalc optimization panel settings

Expert consideration of optimization results

- Selecting extremum points of optimization results
- Work with rendering images
- Check in various standard lighting conditions
- Tilting and movie options
- Negative optical effects
- New parameters for computer optimization

Lighting conditions

© 2007 OctoNus Ltd & Diamond

Second stage of computer optimization

- Microanalyses parameters
- Graphical representation of optimization results
- Work with rendering images

Fixing one proportions set

- Check in different lightings
- Check movie and tilting
- Check optical phenomena
- Check proportions, angles and azimuths
- Export to ASCII file

Final allocation

- Rough optimization with fixed proportions
- Expert check of the new plan
- Cutting instructions and final plan report

Importing optimized DiamCalc cut to Pacor Client

Front view

Rough 5.00 ct Optimized cushion 3.03 ct

Top view

Final cutting report

60002 2 5.00ct General information

Model	Cushion
Report date	11.12.2007
Weight, ct	3.00, 3.0000
Width, mm	7.221
Length, mm	8.021
L/W ratio	1.111
Total height	5.335 mm, 73.87 %

Main parameters

Pavilion depth	% mm	46.93 3.389
Crown height	% mm	15.67 1.131
Table	% mm	73.06 5.538
Culet	% mm	0.00
Girdle thickness: Bezel	%	11.27
Girdle thickness: Valley	%	3.74
Girdle thickness: Bezel	mm	0.814
Girdle thickness: Valley	mm	0.270

Facets' azimuths and slope angles

Principles of diamond color grading

Color grading in a Lab

/2 /4 /6 /8 /10 /12 /14 VALUE/CHROMA

Documenting of the final stone

- Polished stone scan
- Photo in the light box
- Polished stone DiamCalc model
- Gemological laboratory report
- Documenting all deviations from the plan

Final stone at different lights

Meda lightbox

G M Judge II black BG

G M Judge II white BG

G M Judge II black BG

Main advantages of color optimization

Better color appearance Avoid negative optical phenomena Better color grade Better yield Predictable results Control from planning to final stage Modeling of existent negative phenomena